Переделал усреднение. Вариант 1

This commit is contained in:
2025-12-02 09:57:09 +03:00
parent 96f961b0f8
commit b9e17df32c
2 changed files with 785 additions and 811 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,6 @@
"""
Points averaging view for satellite data grouping by day/night intervals.
Groups points by Source, then by time intervals within each Source.
"""
from datetime import datetime, timedelta
from django.contrib.auth.mixins import LoginRequiredMixin
@@ -8,7 +9,7 @@ from django.shortcuts import render
from django.views import View
from django.utils import timezone
from ..models import ObjItem, Satellite
from ..models import ObjItem, Satellite, Source
from ..utils import (
calculate_mean_coords,
calculate_distance_wgs84,
@@ -29,8 +30,9 @@ class PointsAveragingView(LoginRequiredMixin, View):
"""
def get(self, request):
# Get satellites that have points with geo data
# Get satellites that have sources with points with geo data
satellites = Satellite.objects.filter(
parameters__objitem__source__isnull=False,
parameters__objitem__geo_obj__coords__isnull=False
).distinct().order_by('name')
@@ -44,13 +46,14 @@ class PointsAveragingView(LoginRequiredMixin, View):
class PointsAveragingAPIView(LoginRequiredMixin, View):
"""
API endpoint for grouping and averaging points by day/night intervals.
API endpoint for grouping and averaging points by Source and day/night intervals.
Groups points into:
- Day: 08:00 - 19:00
- Night: 19:00 - 08:00 (next day)
- Weekend: Friday 19:00 - Monday 08:00
For each group, calculates average coordinates and checks for outliers (>56 km).
For each group within each Source, calculates average coordinates and checks for outliers (>56 km).
"""
def get(self, request):
@@ -76,9 +79,50 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
except ValueError:
return JsonResponse({'error': 'Неверный формат даты'}, status=400)
# Get all points for the satellite in the date range
objitems = ObjItem.objects.filter(
parameter_obj__id_satellite=satellite,
# Get all Sources for the satellite that have points in the date range
sources = Source.objects.filter(
source_objitems__parameter_obj__id_satellite=satellite,
source_objitems__geo_obj__coords__isnull=False,
source_objitems__geo_obj__timestamp__gte=date_from_obj,
source_objitems__geo_obj__timestamp__lt=date_to_obj,
).distinct().prefetch_related(
'source_objitems',
'source_objitems__geo_obj',
'source_objitems__geo_obj__mirrors',
'source_objitems__parameter_obj',
'source_objitems__parameter_obj__polarization',
'source_objitems__parameter_obj__modulation',
'source_objitems__parameter_obj__standard',
)
if not sources.exists():
return JsonResponse({'error': 'Источники не найдены в указанном диапазоне'}, status=404)
# Process each source
result_sources = []
for source in sources:
source_data = self._process_source(source, date_from_obj, date_to_obj)
if source_data['groups']: # Only add if has groups with points
result_sources.append(source_data)
if not result_sources:
return JsonResponse({'error': 'Точки не найдены в указанном диапазоне'}, status=404)
return JsonResponse({
'success': True,
'satellite': satellite.name,
'date_from': date_from,
'date_to': date_to,
'sources': result_sources,
'total_sources': len(result_sources),
})
def _process_source(self, source, date_from_obj, date_to_obj):
"""
Process a single Source: get its points and group them by time intervals.
"""
# Get all points for this source in the date range
objitems = source.source_objitems.filter(
geo_obj__coords__isnull=False,
geo_obj__timestamp__gte=date_from_obj,
geo_obj__timestamp__lt=date_to_obj,
@@ -89,16 +133,12 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
'parameter_obj__modulation',
'parameter_obj__standard',
'geo_obj',
'source',
).prefetch_related(
'geo_obj__mirrors'
).order_by('geo_obj__timestamp')
if not objitems.exists():
return JsonResponse({'error': 'Точки не найдены в указанном диапазоне'}, status=404)
# Group points by source name and day/night intervals
groups = self._group_points_by_intervals(objitems)
# Group points by day/night intervals
groups = self._group_points_by_intervals(list(objitems))
# Process each group: calculate average and check for outliers
result_groups = []
@@ -106,21 +146,27 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
group_result = self._process_group(group_key, points)
result_groups.append(group_result)
return JsonResponse({
'success': True,
'satellite': satellite.name,
'date_from': date_from,
'date_to': date_to,
# Get source name from first point or use ID
source_name = f"Источник #{source.id}"
if objitems.exists():
first_point = objitems.first()
if first_point.name:
source_name = first_point.name
return {
'source_id': source.id,
'source_name': source_name,
'total_points': sum(len(g['points']) for g in result_groups),
'groups': result_groups,
'total_groups': len(result_groups),
})
}
def _group_points_by_intervals(self, objitems):
"""
Group points by source name and day/night intervals.
Group points by day/night intervals.
Day: 08:00 - 19:00
Night: 19:00 - 08:00 (next day)
Weekend: Friday 19:00 - Monday 08:00
"""
groups = {}
@@ -129,19 +175,14 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
continue
timestamp = timezone.localtime(objitem.geo_obj.timestamp)
# timestamp = objitem.geo_obj.timestamp
source_name = objitem.name or f"Объект #{objitem.id}"
# Determine interval
interval_key = self._get_interval_key(timestamp)
# Create group key: (source_name, interval_key)
group_key = (source_name, interval_key)
if interval_key not in groups:
groups[interval_key] = []
if group_key not in groups:
groups[group_key] = []
groups[group_key].append(objitem)
groups[interval_key].append(objitem)
return groups
@@ -208,7 +249,7 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
return date - timedelta(days=3)
return date
def _process_group(self, group_key, points):
def _process_group(self, interval_key, points):
"""
Process a group of points: calculate average and check for outliers.
@@ -218,8 +259,6 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
3. Iteratively add points within 56 km of current average
4. Points not within 56 km of final average are outliers
"""
source_name, interval_key = group_key
# Parse interval info
date_str, interval_type = interval_key.rsplit('_', 1)
interval_date = datetime.strptime(date_str, '%Y-%m-%d').date()
@@ -322,7 +361,7 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
# Calculate median time from valid points using timestamp_objects array
valid_timestamps = []
for i in valid_indices:
if timestamp_objects[i]:
if i < len(timestamp_objects) and timestamp_objects[i]:
valid_timestamps.append(timestamp_objects[i])
median_time_str = '-'
@@ -344,7 +383,6 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
median_time_str = timezone.localtime(median_datetime).strftime("%d.%m.%Y %H:%M")
return {
'source_name': source_name,
'interval_key': interval_key,
'interval_label': interval_label,
'total_points': len(points_data),