Compare commits

..

3 Commits

3 changed files with 812 additions and 965 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -203,10 +203,17 @@ def find_mirror_satellites(mirror_names: list) -> list:
Алгоритм:
1. Для каждого имени зеркала:
- Обрезать пробелы и привести к нижнему регистру
- Обрезать пробелы
- Извлечь первую часть имени (до скобки), если есть двойное имя
- Привести к нижнему регистру
- Найти все спутники, в имени или альтернативном имени которых содержится это имя
2. Вернуть список найденных спутников
Примеры обработки:
- "DSN-3 (SUPERBIRD-C2)" -> "dsn-3"
- "Turksat 3A" -> "turksat 3a"
- " Amos 4 " -> "amos 4"
Args:
mirror_names: список имен зеркал
@@ -221,15 +228,26 @@ def find_mirror_satellites(mirror_names: list) -> list:
if not mirror_name or mirror_name == "-":
continue
# Обрезаем пробелы и приводим к нижнему регистру
mirror_name_clean = mirror_name.strip().lower()
# Обрезаем пробелы
mirror_name_clean = mirror_name.strip()
if not mirror_name_clean:
if not mirror_name_clean or mirror_name_clean == "-":
continue
# Извлекаем первую часть имени (до скобки), если есть двойное имя
# Например: "DSN-3 (SUPERBIRD-C2)" -> "DSN-3"
if "(" in mirror_name_clean:
mirror_name_clean = mirror_name_clean.split("(")[0].strip()
# Приводим к нижнему регистру для поиска
mirror_name_lower = mirror_name_clean.lower()
if not mirror_name_lower:
continue
# Ищем спутники, в имени или альтернативном имени которых содержится имя зеркала
satellites = Satellite.objects.filter(
Q(name__icontains=mirror_name_clean) | Q(alternative_name__icontains=mirror_name_clean)
Q(name__icontains=mirror_name_lower) | Q(alternative_name__icontains=mirror_name_lower)
)
found_satellites.extend(satellites)
@@ -1395,27 +1413,28 @@ def kub_report(data_in: io.StringIO) -> pd.DataFrame:
from pyproj import CRS, Transformer
def get_gauss_kruger_zone(longitude: float) -> int:
def get_gauss_kruger_zone(longitude: float) -> int | None:
"""
Определяет номер зоны Гаусса-Крюгера по долготе.
Зоны ГК нумеруются от 1 до 60, каждая зона охватывает 6° долготы.
Центральный меридиан зоны N: (6*N - 3)°
Зоны ГК (Пулково 1942) имеют EPSG коды 28404-28432 (зоны 4-32).
Каждая зона охватывает 6° долготы.
Args:
longitude: Долгота в градусах (от -180 до 180)
Returns:
int: Номер зоны ГК (1-60)
int | None: Номер зоны ГК (4-32) или None если координаты вне зон ГК
"""
# Нормализуем долготу к диапазону 0-360
lon_normalized = longitude if longitude >= 0 else longitude + 360
# Вычисляем номер зоны (1-60)
zone = int((lon_normalized + 6) / 6)
if zone > 60:
zone = 60
if zone < 1:
zone = 1
# EPSG коды Пулково 1942 существуют только для зон 4-32
if zone < 4 or zone > 32:
return None
return zone
@@ -1423,14 +1442,8 @@ def get_gauss_kruger_epsg(zone: int) -> int:
"""
Возвращает EPSG код для зоны Гаусса-Крюгера (Pulkovo 1942 / Gauss-Kruger).
EPSG коды для Pulkovo 1942 GK зон:
- Зона 4: EPSG:28404
- Зона 5: EPSG:28405
- ...
- Зона N: EPSG:28400 + N
Args:
zone: Номер зоны ГК (1-60)
zone: Номер зоны ГК (4-32)
Returns:
int: EPSG код проекции
@@ -1438,13 +1451,50 @@ def get_gauss_kruger_epsg(zone: int) -> int:
return 28400 + zone
def get_utm_zone(longitude: float) -> int:
"""
Определяет номер зоны UTM по долготе.
UTM зоны нумеруются от 1 до 60, каждая зона охватывает 6° долготы.
Args:
longitude: Долгота в градусах (от -180 до 180)
Returns:
int: Номер зоны UTM (1-60)
"""
zone = int((longitude + 180) / 6) + 1
if zone > 60:
zone = 60
if zone < 1:
zone = 1
return zone
def get_utm_epsg(zone: int, is_northern: bool = True) -> int:
"""
Возвращает EPSG код для зоны UTM (WGS 84 / UTM).
Args:
zone: Номер зоны UTM (1-60)
is_northern: True для северного полушария, False для южного
Returns:
int: EPSG код проекции
"""
if is_northern:
return 32600 + zone
else:
return 32700 + zone
def transform_wgs84_to_gk(coord: tuple, zone: int = None) -> tuple:
"""
Преобразует координаты из WGS84 (EPSG:4326) в проекцию Гаусса-Крюгера.
Преобразует координаты из WGS84 в проекцию Гаусса-Крюгера.
Args:
coord: Координаты в формате (longitude, latitude) в WGS84
zone: Номер зоны ГК (если None, определяется автоматически по долготе)
zone: Номер зоны ГК (если None, определяется автоматически)
Returns:
tuple: Координаты (x, y) в метрах в проекции ГК
@@ -1454,9 +1504,11 @@ def transform_wgs84_to_gk(coord: tuple, zone: int = None) -> tuple:
if zone is None:
zone = get_gauss_kruger_zone(lon)
if zone is None:
raise ValueError(f"Координаты ({lon}, {lat}) вне зон Гаусса-Крюгера (4-32)")
epsg_gk = get_gauss_kruger_epsg(zone)
# Создаём трансформер WGS84 -> GK
transformer = Transformer.from_crs(
CRS.from_epsg(4326),
CRS.from_epsg(epsg_gk),
@@ -1469,7 +1521,7 @@ def transform_wgs84_to_gk(coord: tuple, zone: int = None) -> tuple:
def transform_gk_to_wgs84(coord: tuple, zone: int) -> tuple:
"""
Преобразует координаты из проекции Гаусса-Крюгера в WGS84 (EPSG:4326).
Преобразует координаты из проекции Гаусса-Крюгера в WGS84.
Args:
coord: Координаты (x, y) в метрах в проекции ГК
@@ -1481,7 +1533,6 @@ def transform_gk_to_wgs84(coord: tuple, zone: int) -> tuple:
x, y = coord
epsg_gk = get_gauss_kruger_epsg(zone)
# Создаём трансформер GK -> WGS84
transformer = Transformer.from_crs(
CRS.from_epsg(epsg_gk),
CRS.from_epsg(4326),
@@ -1492,37 +1543,126 @@ def transform_gk_to_wgs84(coord: tuple, zone: int) -> tuple:
return (lon, lat)
def calculate_distance_gk(coord1_gk: tuple, coord2_gk: tuple) -> float:
def transform_wgs84_to_utm(coord: tuple, zone: int = None, is_northern: bool = None) -> tuple:
"""
Вычисляет расстояние между двумя точками в проекции ГК (в километрах).
Преобразует координаты из WGS84 в проекцию UTM.
Args:
coord1_gk: Первая точка (x, y) в метрах
coord2_gk: Вторая точка (x, y) в метрах
coord: Координаты в формате (longitude, latitude) в WGS84
zone: Номер зоны UTM (если None, определяется автоматически)
is_northern: Северное полушарие (если None, определяется по широте)
Returns:
float: Расстояние в километрах
tuple: Координаты (x, y) в метрах в проекции UTM
"""
import math
x1, y1 = coord1_gk
x2, y2 = coord2_gk
distance_m = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
return distance_m / 1000
def average_coords_in_gk(coords: list[tuple], zone: int = None) -> tuple:
"""
Вычисляет среднее арифметическое координат в проекции Гаусса-Крюгера.
lon, lat = coord
Алгоритм:
1. Определяет зону ГК по первой точке (если не указана)
2. Преобразует все координаты в проекцию ГК
3. Вычисляет среднее арифметическое X и Y
4. Преобразует результат обратно в WGS84
if zone is None:
zone = get_utm_zone(lon)
if is_northern is None:
is_northern = lat >= 0
epsg_utm = get_utm_epsg(zone, is_northern)
transformer = Transformer.from_crs(
CRS.from_epsg(4326),
CRS.from_epsg(epsg_utm),
always_xy=True
)
x, y = transformer.transform(lon, lat)
return (x, y)
def transform_utm_to_wgs84(coord: tuple, zone: int, is_northern: bool = True) -> tuple:
"""
Преобразует координаты из проекции UTM в WGS84.
Args:
coord: Координаты (x, y) в метрах в проекции UTM
zone: Номер зоны UTM
is_northern: Северное полушарие
Returns:
tuple: Координаты (longitude, latitude) в WGS84
"""
x, y = coord
epsg_utm = get_utm_epsg(zone, is_northern)
transformer = Transformer.from_crs(
CRS.from_epsg(epsg_utm),
CRS.from_epsg(4326),
always_xy=True
)
lon, lat = transformer.transform(x, y)
return (lon, lat)
def average_coords_in_gk(coords: list[tuple], zone: int = None) -> tuple[tuple, str]:
"""
Вычисляет среднее арифметическое координат в проекции.
Приоритет:
1. Гаусс-Крюгер (Пулково 1942) для зон 4-32
2. UTM для координат вне зон ГК
3. Геодезическое усреднение как последний fallback
Args:
coords: Список координат в формате [(lon1, lat1), (lon2, lat2), ...]
zone: Номер зоны (если None, определяется по первой точке)
Returns:
tuple: (координаты (lon, lat), тип_усреднения)
тип_усреднения: "ГК" | "UTM" | "Геод"
"""
if not coords:
return (0, 0), "ГК"
if len(coords) == 1:
return coords[0], "ГК"
first_lon, first_lat = coords[0]
# Пытаемся использовать Гаусс-Крюгер
if zone is None:
gk_zone = get_gauss_kruger_zone(first_lon)
else:
gk_zone = zone if 4 <= zone <= 32 else None
# Если координаты в зонах ГК (4-32), используем ГК
if gk_zone is not None:
try:
coords_projected = [transform_wgs84_to_gk(c, gk_zone) for c in coords]
avg_x = sum(c[0] for c in coords_projected) / len(coords_projected)
avg_y = sum(c[1] for c in coords_projected) / len(coords_projected)
return transform_gk_to_wgs84((avg_x, avg_y), gk_zone), "ГК"
except Exception:
pass # Fallback на UTM
# Fallback на UTM для координат вне зон ГК
try:
utm_zone = get_utm_zone(first_lon)
is_northern = first_lat >= 0
coords_utm = [transform_wgs84_to_utm(c, utm_zone, is_northern) for c in coords]
avg_x = sum(c[0] for c in coords_utm) / len(coords_utm)
avg_y = sum(c[1] for c in coords_utm) / len(coords_utm)
return transform_utm_to_wgs84((avg_x, avg_y), utm_zone, is_northern), "UTM"
except Exception:
# Последний fallback - геодезическое усреднение
return _average_coords_geodesic(coords), "Геод"
def _average_coords_geodesic(coords: list[tuple]) -> tuple:
"""
Вычисляет среднее координат через последовательное геодезическое усреднение.
Используется как fallback при ошибках проекции.
Args:
coords: Список координат в формате [(lon1, lat1), (lon2, lat2), ...]
zone: Номер зоны ГК (если None, определяется по первой точке)
Returns:
tuple: Средние координаты (longitude, latitude) в WGS84
@@ -1533,19 +1673,12 @@ def average_coords_in_gk(coords: list[tuple], zone: int = None) -> tuple:
if len(coords) == 1:
return coords[0]
# Определяем зону по первой точке
if zone is None:
zone = get_gauss_kruger_zone(coords[0][0])
# Последовательно усредняем точки
result = coords[0]
for i in range(1, len(coords)):
result, _ = calculate_mean_coords(result, coords[i])
# Преобразуем все координаты в ГК
coords_gk = [transform_wgs84_to_gk(c, zone) for c in coords]
# Вычисляем среднее арифметическое
avg_x = sum(c[0] for c in coords_gk) / len(coords_gk)
avg_y = sum(c[1] for c in coords_gk) / len(coords_gk)
# Преобразуем обратно в WGS84
return transform_gk_to_wgs84((avg_x, avg_y), zone)
return result
def calculate_mean_coords(coord1: tuple, coord2: tuple) -> tuple[tuple, float]:

View File

@@ -1,5 +1,6 @@
"""
Points averaging view for satellite data grouping by day/night intervals.
Groups points by Source, then by time intervals within each Source.
"""
from datetime import datetime, timedelta
from django.contrib.auth.mixins import LoginRequiredMixin
@@ -8,7 +9,7 @@ from django.shortcuts import render
from django.views import View
from django.utils import timezone
from ..models import ObjItem, Satellite
from ..models import ObjItem, Satellite, Source
from ..utils import (
calculate_mean_coords,
calculate_distance_wgs84,
@@ -29,8 +30,9 @@ class PointsAveragingView(LoginRequiredMixin, View):
"""
def get(self, request):
# Get satellites that have points with geo data
# Get satellites that have sources with points with geo data
satellites = Satellite.objects.filter(
parameters__objitem__source__isnull=False,
parameters__objitem__geo_obj__coords__isnull=False
).distinct().order_by('name')
@@ -44,13 +46,14 @@ class PointsAveragingView(LoginRequiredMixin, View):
class PointsAveragingAPIView(LoginRequiredMixin, View):
"""
API endpoint for grouping and averaging points by day/night intervals.
API endpoint for grouping and averaging points by Source and day/night intervals.
Groups points into:
- Day: 08:00 - 19:00
- Night: 19:00 - 08:00 (next day)
- Weekend: Friday 19:00 - Monday 08:00
For each group, calculates average coordinates and checks for outliers (>56 km).
For each group within each Source, calculates average coordinates and checks for outliers (>56 km).
"""
def get(self, request):
@@ -76,9 +79,50 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
except ValueError:
return JsonResponse({'error': 'Неверный формат даты'}, status=400)
# Get all points for the satellite in the date range
objitems = ObjItem.objects.filter(
parameter_obj__id_satellite=satellite,
# Get all Sources for the satellite that have points in the date range
sources = Source.objects.filter(
source_objitems__parameter_obj__id_satellite=satellite,
source_objitems__geo_obj__coords__isnull=False,
source_objitems__geo_obj__timestamp__gte=date_from_obj,
source_objitems__geo_obj__timestamp__lt=date_to_obj,
).distinct().prefetch_related(
'source_objitems',
'source_objitems__geo_obj',
'source_objitems__geo_obj__mirrors',
'source_objitems__parameter_obj',
'source_objitems__parameter_obj__polarization',
'source_objitems__parameter_obj__modulation',
'source_objitems__parameter_obj__standard',
)
if not sources.exists():
return JsonResponse({'error': 'Источники не найдены в указанном диапазоне'}, status=404)
# Process each source
result_sources = []
for source in sources:
source_data = self._process_source(source, date_from_obj, date_to_obj)
if source_data['groups']: # Only add if has groups with points
result_sources.append(source_data)
if not result_sources:
return JsonResponse({'error': 'Точки не найдены в указанном диапазоне'}, status=404)
return JsonResponse({
'success': True,
'satellite': satellite.name,
'date_from': date_from,
'date_to': date_to,
'sources': result_sources,
'total_sources': len(result_sources),
})
def _process_source(self, source, date_from_obj, date_to_obj):
"""
Process a single Source: get its points and group them by time intervals.
"""
# Get all points for this source in the date range
objitems = source.source_objitems.filter(
geo_obj__coords__isnull=False,
geo_obj__timestamp__gte=date_from_obj,
geo_obj__timestamp__lt=date_to_obj,
@@ -89,16 +133,12 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
'parameter_obj__modulation',
'parameter_obj__standard',
'geo_obj',
'source',
).prefetch_related(
'geo_obj__mirrors'
).order_by('geo_obj__timestamp')
if not objitems.exists():
return JsonResponse({'error': 'Точки не найдены в указанном диапазоне'}, status=404)
# Group points by source name and day/night intervals
groups = self._group_points_by_intervals(objitems)
# Group points by day/night intervals
groups = self._group_points_by_intervals(list(objitems))
# Process each group: calculate average and check for outliers
result_groups = []
@@ -106,21 +146,27 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
group_result = self._process_group(group_key, points)
result_groups.append(group_result)
return JsonResponse({
'success': True,
'satellite': satellite.name,
'date_from': date_from,
'date_to': date_to,
# Get source name from first point or use ID
source_name = f"Источник #{source.id}"
if objitems.exists():
first_point = objitems.first()
if first_point.name:
source_name = first_point.name
return {
'source_id': source.id,
'source_name': source_name,
'total_points': sum(len(g['points']) for g in result_groups),
'groups': result_groups,
'total_groups': len(result_groups),
})
}
def _group_points_by_intervals(self, objitems):
"""
Group points by source name and day/night intervals.
Group points by day/night intervals.
Day: 08:00 - 19:00
Night: 19:00 - 08:00 (next day)
Weekend: Friday 19:00 - Monday 08:00
"""
groups = {}
@@ -129,19 +175,14 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
continue
timestamp = timezone.localtime(objitem.geo_obj.timestamp)
# timestamp = objitem.geo_obj.timestamp
source_name = objitem.name or f"Объект #{objitem.id}"
# Determine interval
interval_key = self._get_interval_key(timestamp)
# Create group key: (source_name, interval_key)
group_key = (source_name, interval_key)
if interval_key not in groups:
groups[interval_key] = []
if group_key not in groups:
groups[group_key] = []
groups[group_key].append(objitem)
groups[interval_key].append(objitem)
return groups
@@ -208,7 +249,7 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
return date - timedelta(days=3)
return date
def _process_group(self, group_key, points):
def _process_group(self, interval_key, points):
"""
Process a group of points: calculate average and check for outliers.
@@ -218,8 +259,6 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
3. Iteratively add points within 56 km of current average
4. Points not within 56 km of final average are outliers
"""
source_name, interval_key = group_key
# Parse interval info
date_str, interval_type = interval_key.rsplit('_', 1)
interval_date = datetime.strptime(date_str, '%Y-%m-%d').date()
@@ -278,7 +317,7 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
})
# Apply clustering algorithm
avg_coord, valid_indices = self._find_cluster_center(points_data)
avg_coord, valid_indices, avg_type = self._find_cluster_center(points_data)
# Mark outliers and calculate distances
outliers = []
@@ -322,7 +361,7 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
# Calculate median time from valid points using timestamp_objects array
valid_timestamps = []
for i in valid_indices:
if timestamp_objects[i]:
if i < len(timestamp_objects) and timestamp_objects[i]:
valid_timestamps.append(timestamp_objects[i])
median_time_str = '-'
@@ -344,7 +383,6 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
median_time_str = timezone.localtime(median_datetime).strftime("%d.%m.%Y %H:%M")
return {
'source_name': source_name,
'interval_key': interval_key,
'interval_label': interval_label,
'total_points': len(points_data),
@@ -353,6 +391,7 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
'has_outliers': len(outliers) > 0,
'avg_coordinates': avg_coords_str,
'avg_coord_tuple': avg_coord,
'avg_type': avg_type,
'avg_time': median_time_str,
'frequency': first_point.get('frequency', '-'),
'freq_range': first_point.get('freq_range', '-'),
@@ -376,13 +415,13 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
If only 1 point, return it as center.
Returns:
tuple: (avg_coord, set of valid point indices)
tuple: (avg_coord, set of valid point indices, avg_type)
"""
if len(points_data) == 0:
return (0, 0), set()
return (0, 0), set(), "ГК"
if len(points_data) == 1:
return points_data[0]['coord_tuple'], {0}
return points_data[0]['coord_tuple'], {0}, "ГК"
# Step 1: Take first point as reference
first_coord = points_data[0]['coord_tuple']
@@ -397,35 +436,32 @@ class PointsAveragingAPIView(LoginRequiredMixin, View):
valid_indices.add(i)
# Step 3: Calculate average of all valid points using Gauss-Kruger projection
avg_coord = self._calculate_average_from_indices(points_data, valid_indices)
avg_coord, avg_type = self._calculate_average_from_indices(points_data, valid_indices)
return avg_coord, valid_indices
return avg_coord, valid_indices, avg_type
def _calculate_average_from_indices(self, points_data, indices):
"""
Calculate average coordinate from points at given indices.
Uses arithmetic averaging in Gauss-Kruger projection.
Uses arithmetic averaging in Gauss-Kruger or UTM projection.
Algorithm:
1. Determine GK zone from the first point
2. Transform all coordinates to GK projection
3. Calculate arithmetic mean of X and Y
4. Transform result back to WGS84
Returns:
tuple: (avg_coord, avg_type) where avg_type is "ГК", "UTM" or "Геод"
"""
indices_list = sorted(indices)
if not indices_list:
return (0, 0)
return (0, 0), "ГК"
if len(indices_list) == 1:
return points_data[indices_list[0]]['coord_tuple']
return points_data[indices_list[0]]['coord_tuple'], "ГК"
# Collect coordinates for averaging
coords = [points_data[idx]['coord_tuple'] for idx in indices_list]
# Use Gauss-Kruger projection for averaging
avg_coord = average_coords_in_gk(coords)
# Use Gauss-Kruger/UTM projection for averaging
avg_coord, avg_type = average_coords_in_gk(coords)
return avg_coord
return avg_coord, avg_type
class RecalculateGroupAPIView(LoginRequiredMixin, View):
@@ -451,7 +487,7 @@ class RecalculateGroupAPIView(LoginRequiredMixin, View):
# If include_all is False, use only non-outlier points and apply clustering
if include_all:
# Average all points - no outliers, all points are valid
avg_coord = self._calculate_average_from_indices(points, set(range(len(points))))
avg_coord, avg_type = self._calculate_average_from_indices(points, set(range(len(points))))
valid_indices = set(range(len(points)))
else:
# Filter out outliers first
@@ -461,7 +497,7 @@ class RecalculateGroupAPIView(LoginRequiredMixin, View):
return JsonResponse({'error': 'No valid points after filtering'}, status=400)
# Apply clustering algorithm
avg_coord, valid_indices = self._find_cluster_center(points)
avg_coord, valid_indices, avg_type = self._find_cluster_center(points)
# Mark outliers and calculate distances
for i, point in enumerate(points):
@@ -522,6 +558,7 @@ class RecalculateGroupAPIView(LoginRequiredMixin, View):
'success': True,
'avg_coordinates': avg_coords_str,
'avg_coord_tuple': avg_coord,
'avg_type': avg_type,
'total_points': len(points),
'valid_points_count': len(valid_points),
'outliers_count': len(outliers),
@@ -537,13 +574,13 @@ class RecalculateGroupAPIView(LoginRequiredMixin, View):
1. Take the first point as reference
2. Find all points within 56 km of the first point
3. Calculate average of all found points using Gauss-Kruger projection
4. Return final average and indices of valid points
4. Return final average, indices of valid points, and averaging type
"""
if len(points) == 0:
return (0, 0), set()
return (0, 0), set(), "ГК"
if len(points) == 1:
return tuple(points[0]['coord_tuple']), {0}
return tuple(points[0]['coord_tuple']), {0}, "ГК"
# Step 1: Take first point as reference
first_coord = tuple(points[0]['coord_tuple'])
@@ -557,27 +594,30 @@ class RecalculateGroupAPIView(LoginRequiredMixin, View):
if distance <= RANGE_DISTANCE:
valid_indices.add(i)
# Step 3: Calculate average of all valid points using Gauss-Kruger projection
avg_coord = self._calculate_average_from_indices(points, valid_indices)
# Step 3: Calculate average of all valid points
avg_coord, avg_type = self._calculate_average_from_indices(points, valid_indices)
return avg_coord, valid_indices
return avg_coord, valid_indices, avg_type
def _calculate_average_from_indices(self, points, indices):
"""
Calculate average coordinate from points at given indices.
Uses arithmetic averaging in Gauss-Kruger projection.
Uses arithmetic averaging in Gauss-Kruger or UTM projection.
Returns:
tuple: (avg_coord, avg_type)
"""
indices_list = sorted(indices)
if not indices_list:
return (0, 0)
return (0, 0), "ГК"
if len(indices_list) == 1:
return tuple(points[indices_list[0]]['coord_tuple'])
return tuple(points[indices_list[0]]['coord_tuple']), "ГК"
# Collect coordinates for averaging
coords = [tuple(points[idx]['coord_tuple']) for idx in indices_list]
# Use Gauss-Kruger projection for averaging
avg_coord = average_coords_in_gk(coords)
# Use Gauss-Kruger/UTM projection for averaging
avg_coord, avg_type = average_coords_in_gk(coords)
return avg_coord
return avg_coord, avg_type